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Decomposition of solids accompanied by melting—Bawn kinetics
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Abstract

The book “Chemistry of the Solid State”, edited by W.E. Garner more than 50 years ago, contained a chapter (Chapter 10)
by C.E.H. Bawn which dealt with the kinetics of the thermal decompositions of solids that are accompanied by some melting.
Rate equations were derived and this model has become known as the Bawn model or as “Bawn kinetics”. This kinetic model
has proved particularly useful in pharmaceutical stability studies. The isothermal curves of extent of decomposition,α, against
time for this model are sigmoidal and the problems of distinguishing this model from other sigmoidal models (Prout–Tompkins,
Avrami–Erofeev) have been examined. Under programmed temperature conditions, distinguishability becomes even more dif-
ficult.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The book “Chemistry of the Solid State”, edited by
W.E. Garner almost 50 years ago, contained a chapter
(Chapter 10) by C.E.H. Bawn (Bawn, 1955)1 which
dealt with the kinetics of the thermal decompositions
of solids that are accompanied by some melting. Rate
equations were derived and this model has become
known as the Bawn model or as “Bawn kinetics”. At-
tempts to trace the origin of these rate equations in
earlier papers by Bawn were not successful. Very few
of the articles that cite the Bawn chapter actually ap-

∗ Corresponding author. Tel.:+27-46-603-8254;
fax: +27-46-622-5109.

E-mail address: m.brown@ru.ac.za (M.E. Brown).
1 Emeritus Professor Cecil Edwin Henry Bawn, B.Sc., Ph.D.

(Bristol), CBE (1956), FRS (1952), was Brummer Professor of
Inorganic and Physical Chemistry at the University of Liverpool
until his retirement in 1969. He is also widely known for his book
“The Chemistry of High Polymers”, Butterworths, London, 1948.

ply the kinetic model. Most citations are as a gen-
eral reference to the thermal decomposition of organic
solids and/or to the decompositions of organic explo-
sives. Amongst the decompositions of organic solids
to which Bawn kinetics have been applied, those of
pharmaceuticals have featured prominently.

2. Rate equations in solid-state kinetics

The rate equations that have found application
in solid-state kinetic analyses (Brown et al., 1980;
Galwey and Brown, 1999) may be generalised in
their derivative forms as: dα/dt = kf(α) and the
corresponding integrated forms as:g(α) = kt + c,
where α is the fractional extent of reaction. These
expressions are grouped according to the shape of the
isothermal α–time curves as acceleratory, sigmoid or
deceleratory (Brown et al., 1980; Galwey and Brown,
1999). The Bawn model (Bawn, 1955), because it is
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not strictly applicable to decompositions occurring
entirely in the solid state, does not usually appear in
this classification.

As a consequence of the bonding in and, hence,
the crystal structures of organic solids, melting or
sublimation may be expected to precede or accom-
pany thermal decomposition.Galwey (1995a,b) has
discussed the possible role of melting in thermal reac-
tions of initially solid reactants, which is not always
considered in the interpretation of kinetic data and the
formulation of reaction mechanisms. Formation of a
liquid phase may result in increased rates of isothermal
decomposition and produce sigmoidα–time curves.

Carstensen (1995)has done much to promote con-
sideration of the Bawn model, particularly in studies
of the decompositions of pharmaceuticals. The Bawn
model applies to the situation where reactant A is sol-
uble in product B with solubility,s. When the extent
of decomposition isα, the fraction of A in the liquid
phase isαs, and in the solid phase is (1− α − αs). If
the rate coefficients for reactions in the solid and in
the liquid phases areks andkl , respectively, then:

dα

dt
= ks(1 − α − αs) + klαs = ks + Kα (1)

whereK = kls − kss − ks, and

α =
(

ks

K

)
[exp(Kt) − 1] (2)

The expected ratiokl /ks can be estimated (Carstensen,
1995), as follows. Using:

ks = Asexp

(−Es

RT

)
and kl = Alexp

(−El

RT

)

and assuming that the differenceEs − El is equal to
the molar enthalpy of melting, then ifAs ≈ Al :

kl

ks
≈ exp

(
�Hmelting

RT

)

For a typical value of�Hmelting ≈ 20 kJ mol−1 and
T = 400 K, kl/ks ≈ 410.

The α–time curves for the Bawn model are sig-
moidal, being acceleratory according toEq. (2), up to
the liquefaction point, whereα = α∗ = 1/(1 + s) at
t = t∗, and deceleratory beyond according to:

1 − α

1 − α∗ = exp[−kl(t − t∗)] (3)

3. Distinguishability from other sigmoid models

Establishing which of the alternative kinetic expres-
sions best describes sets of experimental data is dif-
ficult (Brown and Galwey, 1979; Galwey and Brown,
1995) and a subject of endless discussion (Brown et al.,
2000). The conventional sigmoid expressions, the
Prout–Tompkins equation (often referred to as B1) and
the Johnson–Mehl–Avrami–Erofeev–Kholmogorov
(JMAEK) equation (referred to as An) are difficult
to distinguish clearly if the exponentn is allowed to
assume any value, including non-integer values. The
Sesták–Berggren equation was proposed (Sesták and
Berggren, 1971; Ng, 1975; Malek and Criado, 1991)
to include most of the familiar rate equations:

dα

dt
= kαm(1 − α)n(−ln(1 − α))p (4)

Whenm = p = 0, the general equation becomes the
“reaction order” (RO) model with a variety of shapes
of deceleratoryα–time curves depending on the value
of n (which is not restricted to integer values). When
m = n = 1 andp = 0, the Prout–Tompkins equation
results (Brown, 1997; Brown and Glass, 1999), and
whenm = n = 0, the general equation becomes the
JMAEK equation (usually written withp = n).

This paper explores the distinguishability of the
Bawn rate equations from the other solid-state sigmoid
models under isothermal conditions and discusses the
greater difficulties expected under programmed tem-
perature conditions.

4. Application of the Bawn model

To test whether a set ofisothermal α–time data
can be satisfactorily described by the Bawn model,
the coordinates of the point of inflection,t∗ and α∗
are determined. The value ofα∗ enables the solubi-
lity parameter,s = (1 − α∗)/α∗ to be calculated. To
estimate the value for the ratio,kl /ks, it is convenient
to combine parameters so that:

B = K

ks
= kl

ks
s − s − 1 (5)

Data for the acceleratory period (0< α < α∗) are
then fitted to:

ln[1 + Bα] = Bkst (6)
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by adjustment ofB. When t = 0, α = 0, so the plot
should pass through the origin. The slope of this plot,
for the optimum value ofB, leads to a value forks.
These values, used inEq. (5)give a value ofkl .

The deceleratory part of the curve (α∗ < α < 1.0)
is then examined by plotting:

ln

(
1 − α

1 − α∗

)
against (t − t∗)

(seeEq. (3)) and the slope gives a value forkl which
is independent of the value ofB and can be compared
with the value found for the acceleratory period.

It is necessary to explore the influences of the
somewhat interdependent adjustable parameters in
the Bawn model. The only significance oft∗ will
be in relation to the absolute values of the rate co-
efficients, kl and ks. It is advantageous to use a
reduced-time scale such thatt∗ = 1.00 atα = α∗. The
value ofα∗ is determined by the solubility parameter
s (= (1−α∗)/α∗). α∗ can range from 0 to 1. It would
be expected thats (moles of reactant dissolved per
mole of liquid product) is unlikely to be a large num-
ber, soα∗ is likely to be in the mid range and the ratio
kl /ks can reasonably be assumed to be greater than 1.

For kl/ks = 10
α∗ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
s 9 4 2.33 1.5 1 0.667 0.429 0.25 0.111
B 80 35 20 12.5 8 5 2.86 1.25 −3.33E−16
ks 0.0274 0.0594 0.0973 0.1433 0.2012 0.2773 0.3845 0.5545 1
kl 0.2747 0.5941 0.9730 1.433 2.012 2.773 3.845 5.545 10

As a reference set of data for comparative purposes,
the Bawn model was used to calculate a set of isother-
mal α–time data such thatα∗ = 0.50 andt∗ = 1.00,
with kl/ks = 10 ands = 1. This requires thatB = 8
and ks(= (ln(1 + Bα∗)/Bt∗) = 0.201. kl = 10ks =
2.01. Theα–time curve is illustrated inFig. 1.

These parameters give a smooth and reasonably
symmetrical sigmoid curve that could readily be
confused with other sigmoid models (Brown et al.,
1980; Galwey and Brown, 1999). For example, the
Prout–Tompkins equation has been used quite exten-
sively in the kinetic analysis of reactions of pharma-
ceutical interest [14]. To test the Bawn model, the
early stages of decomposition should give a linear plot
of ln α againstt and the later stages a linear plot of
ln(1− α) againstt. The same holds for the PT model,

Fig. 1. The isothermalα–reduced-time curve (�) for the Bawn
model with α∗ = 0.50 and t∗ = 1.00, kl/ks = 10 and s = 1.
Curve (�) is the closest fit of the Prout–Tompkins model with
k = 3.10 ± 0.07. Curve (×) is a plot of the residuals (alpha
PT–alpha Bawn).

so the two models cannot readily be distinguished on
kinetic grounds.

Two less-symmetrical examples are shown inFig. 2,
for α∗ = 0.30 and 0.70 and the interdependent para-
meters.

The reverse of the above procedure involved
applying the Bawn analysis to data calculated for the
PT equation. The results (not illustrated) for PT data,
calculated for a singlekPT value of 3.892 to give
α∗ = 0.50 andt∗ = 1.00, resulted in coincidence of
the Bawn curve with the original data of the order of
that shown inFig. 1, if B = 57, s = 1, ks = 0.0478,
kl = 2.82 (acceleratory period) or 3.27 (deceleratory
region).

The Bawn analysis procedure was also used on a
set of isothermalα–reduced-time data calculated for
the JMAEK model (Brown et al., 1980; Galwey and
Brown, 1999) with n = 3 (the A3 model) and with
α∗ = 0.50 andt∗ = 1.0, i.e.α = 1−exp(−k3t)

3 with
k3 = 0.8850. Determination of an optimum value of
parameterB from the acceleratory period of the A3
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Fig. 2. Isothermalα–reduced-time curves for the Bawn model (�)
with α∗ = 0.30 andt∗ = 1.00, kl/ks = 10 ands = 2.33, B = 20,
ks = 0.0973,kl = 0.973; and (�) with α∗ = 0.70 andt∗ = 1.00,
kl/ks = 10 ands = 0.43, B = 2.86, ks = 0.3845,kl = 3.845.

curve shown inFig. 3 gave poor linearity with the
highestr2 value (0.9844)B = 60 (ks = 0.0644 and
kl = 3.99) but a non-zero intercept (−0.24). For a
zero intercept, ther2 value decreased to 0.9730 and
B = 204 (ks = 0.0249 andkl = 5.13), seeFig. 4.

Analysis of the deceleratory region again gave poor
linearity, seeFig. 5, with r2 = 0.9680 andkl =
4.80± 0.29 lying between the values estimated from
the acceleratory period (Fig. 4).

Returning to the Bawn model as represented in
Fig. 1, analysis in terms of the JMAEK models with

Fig. 3. An isothermalα–reduced-time curve (×) calculated for the
JMAEK model with n = 3 (the A3 model) and withα∗ = 0.50
and t∗ = 1.0, i.e. α = 1 − exp(−k3t)

3 with k3 = 0.8850. The
superimposed curves are the calculated curves from a Bawn anal-
ysis of the A3 data over the acceleratory and deceleratory regions.
Curve (�) is B = 60 and curve (�) is B = 204, seeFig. 4.

Fig. 4. Bawn analysis of the acceleratory period of the A3 curve
shown inFig. 3, together with regression lines (�). The highest
r2 value (0.9844) was obtained forB = 60 (×) (ks = 0.0644 and
kl = 3.99) but a non-zero intercept (−0.24). For a zero intercept
(�), the r2 value decreased to 0.9730 andB = 204 (ks = 0.0249
and kl = 5.13).

Fig. 5. Bawn analysis (�) of the deceleratory region of the A3
model (Fig. 3). r2 = 0.9680 andkl = 4.80± 0.29, together with
the regression line (�).

n = 2–4 led to the recalculatedα–time curves shown
in Fig. 6. Distinguishability is poor but can be im-
proved slightly by examining the residuals (αexpt −
αcalc) (Brown and Galwey, 1979)shown inFig. 7.

5. The generalized Prout–Tompkins equation

Jacobs (1997)has re-examined the Prout–Tompkins
model and generalized it for application to non-
symmetrical isothermalα–time curves.Carstensen
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Fig. 6. JMAEK analysis of the Bawn model fromFig. 1. (×)
Bawn curve; (�) A2 model (k = 0.842± 0.014); (�) A3 model
(k = 0.597± 0.014); (+) A4 model (k = 0.465± 0.014).

(1980)has provided a mathematically more-complex
alternative treatment that is more difficult to apply
and interpret.Jacob’s (1997)treatment results in the
following expression forα:

α =
[
(exp(k(t − to) + C)−1 +

(
1

2
αi

)]−1

whereC = αo/(1 − αo/2αi) andαo is the extent of
initial decomposition that takes place in the time
interval, 0< t < to, before the PT mechanism applies.
αi is the value ofα at the point of inflection. A set of
α–time data calculated for a symmetrical Bawn model
(α∗ = 0.50, t∗ = 1.00, s = 1, B = 8, ks = 0.20118,
kl = 2.0118) was analyzed using the non-linear

Fig. 7. Residual plots (αexpt − αcalc) for Fig. 6. (×) A2 model;
(�) A3 model; (�) A4 model.

regression program, NLREG (Sherrod Software), to
determine the parametersto, αo, αi. The result was
that the curve could be adequately described us-
ing to = 0.9778± 0.0019; αi = 0.4769± 0.0013,
αo = −0.0228± 0.0030, and a single rate constant
k = 3.405± 0.034.

6. Effect of temperature

Isothermal experiments will fall into two broad
groups depending upon whether the temperature is
below or above the minimum required for partial liq-
uefaction of the reactant/product mixture. This min-
imum temperature, in turn, depends upon the extent
of decomposition, because, assuming that Raoult’s
law applies (Bawn, 1955), the proportion of product
will determine the lowering of the normal melting
point of the reactant.Bawn (1955)quotes an exam-
ple of a study (Yoffe, 1951) on the decomposition
of trinitrotriazidobenzene. The normal melting point
of the reactant was 130◦C. Below the melting point,
decomposition (giving nitrogen and hexanitrosoben-
zene, melting point 15◦C) was slow, but if the solid
was maintained at 120◦C, melting occurred after
6 min, and decomposition became rapid. Decomposi-
tion of molten Tetryl (Hinshelwood, 1921) was about
50 times greater than in the solid state just below the
melting point. Addition of substances that lowered the
melting point, increased the rate of decomposition.
Addition of picric acid, which is a decomposition
product, increased the rate of decomposition in both
the solid and liquid states, so autocatalysis also plays
a part.

Carstensen and Musa (1972)used the Bawn model
in describing their results for the decomposition of
a series of substituted benzoic acids. The decompo-
sition of m-nitroperoxybenzoic acid (Debenham and
Owen, 1966) proceeds entirely in the solid phase at
66.5◦C, but at temperatures up to 90◦C the reac-
tant melts at some stage of the decomposition. The
PT expression was used to describe the symmetrical
sigmoid α–time curves obtained. The fact that the
reactant melts invalidates the PT model, but autocatal-
ysis of the decomposition bym-nitrobenzoic acid, the
principal product of decomposition, was shown to
occur. Addition of other substituted benzoic acids to
the reactant also catalysed decomposition.
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7. Non-isothermal Bawn kinetics

From the discussion of the effect of temperature,
above, the behaviour of the Bawn model under pro-
grammed temperature experiments can be expected
to be very complicated. For two concurrent processes
(Vyazovkin and Lesnikovich, 1990, Criado et al.,
1988) with constant contributionsw1 and w2 of the
overall reaction and different Arrhenius parameters,
separation of the contributions is most easily achieved
when the activation energies of the two processes are
considerably different. Processes with lowEa values
dominate the kinetics at low temperatures and slow
heating rates, while processes with highEa values
dominate at high temperatures and fast heating rates.

8. The Bawn model

The nature and coordinates of the inflection point,
t∗ and α∗, are the important criteria in judging the
possible applicability of the Bawn model. If the in-
flection is very marked (worse than the behaviour
illustrated in Fig. 2) complex kinetics would be
clearly indicated and the Bawn model is one specific
instance of the range of concurrent/consecutive com-
plex mechanisms. It is fairly generally recognised
(Brown et al., 2000) that isothermal experiments are
more successful in identifying kinetic models, while
programmed temperature experiments provide more
accurate information on the Arrhenius parameters and
their possible variation with extent of reaction.

For smoother inflection points, the isothermal
α–time curves calculated from appropriate sets of
input parameters for the Bawn model are not read-
ily distinguishable from curves calculated, usually
with fewer adjustable parameters, for the other, better
known, sigmoidal models.

The solubility parameter,s = (1 − α∗)/α∗ does
not appear to be readily measurable in a direct exper-
iment and thus, becomes simply a parameter that is
dependent onα∗. The parameterB = (kl/ks) − s − 1
contains the ratio of rate constants,kl /ks, and is thus
generally going to be strongly temperature dependent.
B is the main adjustable parameter in the curve fitting
of the acceleratory period and leads to a value for
ks. Combination with the adjusted value ofB gives a
value of kl . The deceleratory part of the curve gives

a value forkl which is independent of the value of
B and can be compared with the value found for
the acceleratory period. Agreement between the two
estimates ofkl is not very impressive.

Apparent applicability of the Bawn model to
experimental data, like all such kinetic analyses, does
not prove the occurrence of the mechanism on which
the model is based. In this instance, there are at least
three possible explanations. The observed accelera-
tory effect may be the result of partial melting, or of
autocatalysis, (or both), or be describable by other
sigmoid models.

Pharmaceutical studies of stability are generally
concerned mainly with initial degradation. Informa-
tion is usually required on the degradation of the drug
alone, on mixing with excipients, and in the presence
of moisture. Accelerated degradation studies have to
be extrapolated to lower temperatures, with allowance
for the possibility of phase changes, and taking the
estimated errors in the kinetic parameters (Ea, A and
g(α)) into account. It is quite possible for studies to be
conducted at isothermal temperatures where the time
taken,t∗, to reach the critical value of the fractional
decomposition,α∗, may be greater than that reason-
ably available, and the possible contribution from later
melting may be overlooked. It is, thus, necessary to
explore a range of isothermal temperatures, as well as
the information available from conventional thermal
analysis (DSC, TG) experiments, when deciding that
the Bawn model could be applicable under certain
conditions. When the degradation curves are deceler-
atory overall, assumption of zero-order behaviour in
the early stages of reaction is reasonable, but this is
not acceptable for sigmoidalα–time curves. If, as is
commonly found, reaction in the melt is more rapid
than in the solid state, extrapolation of observed be-
haviour to expected behaviour at lower temperatures
will be invalid.

9. Conclusions

The Bawn model is an attempt to account quan-
titatively for the occurrence of significant amounts
of melting during decomposition of a solid. Like all
kinetic analyses though, the applicability of the model
has to be supported by additional evidence. Use
of modulated temperature DSC to separate melting
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(reversible) from decomposition (irreversible) is
perhaps the most promising technique.
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